经典案例
通过精确控制送粉器粉末输送流量详情
当前位置:主页 > 秒速牛牛作品 > 经典案例 >
通过精确控制送粉器粉末输送流量

   

  所谓的3D打印机与普通打印机工作原理基本相同,只是打印材料有些不同,普通打印机的打印材料是墨水和纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,打印机与电脑连接后,通过电脑控制可以把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。

  通俗地说,3D打印机是可以“打印”出线D物体的一种设备,比如打印一个机器人、打印玩具车,打印各种模型,甚至是食物等等。之所以通俗地称其为“打印机”是参照了普通打印机的技术原理,因为分层加工的过程与喷墨打印十分相似。这项打印技术称为3D立体打印技术。

  3D打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

  使用STL格式文件打印3D模型前需要先进行“流形错误”检查,这一步通常称为“修正”。对于采用3D扫描获得的模型来说,STL文件“修正”尤其重要,因为这样的模型通常会有大量流形错误。常见的流形错误包括,各表面没有相互连接,或是模型上存在空隙等。netfabb、Meshmixer,或是Cura和Slic3r都是常见的修正软件。[15][16]

  完成修正后,用户可以用一种名为“slicer”(意为“切片机”)的软件功能将STL文件代表的模型转换成一系列薄层,同时生成G代码文件,其中包括针对某种3D打印机(FDM打印机)的定制指令。接下来,用户可以用3D打印客户端软件打印G代码文件,这种客户端软件可以利用加载的G代码指示3D打印机完成打印过程)。

  打印分辨率指的是层次的厚度以及长和宽分辨率,单位为点/英寸(dpi)或微米(m)。层厚一般为100微米(250点/英寸),但有些打印机,例如OBjet Connex 系列和Project 3D系统,可以打印层厚16微米(1600点/英寸)的物体[17],横纵分辨率可以与激光打印机媲美,3D圆点直径大约为50到100微米(510到250点/英寸)。

  多家公司正在研发家用3D打印机。目标市场主要为DIY一族,3D打印爱好者,灯塔客户以及学术研究和计算机领域。

  RepRap在3D打印机家用系列中已经发展了很久,旨在生产自由及开源硬件(FOSH)的3D打印机,各项规格匹配GNU通用公共许可证的要求,并能生产自身零部件。RepRap已证明可以打印电路板和金属部件。

  3D打印(3DP)即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

  3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。

  该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、以及其他领域都有所应用。

  推荐于2017-09-04 01:44:19评论a3D打印技术有很多种,大致有激光粉末成型法、熔融塑料成型法、光敏树脂成型法等几种,技术原理是无论何种成型法,都是采取原料加层方法形成3D物体,每次打印一层材料只有0.1mm-0.2mm厚,与2维打印机相比,3D打印机多了一维,即Z轴,通过X-Y-Z轴的运动,将原料逐层堆积而成,如熔融塑料成型法,喷嘴喷出熔融的塑料丝,承物平台作3维运动,即可堆积出3D实物(等于一层层粘上去)。本回答被网友采纳GXYL007发布于2012-11-03评论a激光立体成形技术(Laser Solid Forming,LSF)的基本原理是:首先在计算机中生成零件的三维CAD模型,然后将该模型按一定的厚度分层“切片”,即将零件的三维数据信息转换成一系列的二维轮廓信息,再采用激光熔覆的方法按照轮廓轨迹逐层堆积材料,最终形成三维实体零件或需进行少量加工的毛坯。1) 显著提高材料的力学和耐腐蚀性能。利用激光束与材料相互作用时的快速熔化和凝固过程,可以获得细小、均匀、致密的组织,消除成分偏析的不利影响,从而提高材料的力学和耐腐蚀性能。表1是几种材料的LSF件力学性能数据,从中可以看出,LSF件的力学性能已达到锻件标准。2) 制造速度快、节省材料、降低成本。LSF技术直接使用金属材料制作零件或近形件,后续的机械加工量很小,极大地节省了材料,同时省去了模具制造的周期和费用,从而大幅度缩短了零件的加工周期。尽管大功率激光加工本身的成本较高,但在航空航天领域高性能零件的制造中其综合成本仍然能够有较大幅度的降低。表2是LSF技术与传统铸造和锻造技术的综合比较,从中可以看出,该技术应用于航空用盘形零件时,其在材料利用率、研制周期、总成本等方面均优于铸造和锻造技术。3) 可在零件不同部位形成不同的成分和组织,合理控制零件的性能。从成形原理上讲,LSF技术是逐点堆积材料,因而可以很方便地在零件的不同部位获得不同的成分,特别是采用自动送粉熔覆的方式进行成形时,通过精确控制送粉器粉末输送流量,原则上可以在零件的任意部位获得所需要的成分,从而实现零件材质和性能的最佳搭配。这一点是传统的铸造和锻造等成形技术无法实现的。

  4) 可以很方便地加工一些高熔点、难加工的材料。由于激光束的能量密度很高,同时激光束与材料之间属于非接触加工,采用LSF技术成形制备那些熔点高、加工性能差的材料,如钨、钛、铌、钼和高温合金等,其难度与普通材料相同,因此该技术相比传统制备成形技术在这方面具有非常突出的优越性。